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A system of differential kinetic equations is derived for the redox reaction nl Ox! + nl Red1 ~ 

~ 11! Ox z + 1/2 Red l , proceeding only through electrode processes. Its numerical solution is 
compared with a simplified analytical solution which leads to linearization of the relations be­
tween measurable quantities and thus verification of the kinetic model used on real redox reactions. 

If the electron exchange between species OX l and Redz does not occur because they do not react 
chemically with each other or because they are in separate solutions connected by a saIt bridge 
or diaphragm and provided with short-circuited platinum electrodes, the reaction between species 
Ox! and Redz can take place pia electrode processes. The kinetics of similar processes is im­
portant, e.g., in developing the latent image!, in amalgam decomposition during manufacture 
of soda lyeZ, in corrosion3 , and can serve as a model of certain enzymatic reactions4 • 

The aim of the present work was to find an analytical expression for the reaction 
time in dependence on kinetic parameters of the electrode processes of both redox 
systems, concentrations, electrical resistance, and reactor parameters, and to use 
its linearized form as a testing criterion for the kinetics of the reaction. 

THEORETICAL 

If the reaction between two redox systems, nzOx l + n 1 Red 2 ~ n 10x2 + n 2 Red 1 , 

is realized by means of electrodes (Fig. 1), the increases and decreases of the reaction 
components are related to the current I j equal to the net production of a positive 
charge per unit time, which is in turn equal to the difference between partial cathodic 
and anodic currents. For the positive electrode (potential E 1), the current I j consists 
of the charging current necessary to change the electrode potential and the current, I, 
flowing through the ollter circuit. For the negative electrode (potential E2 ), the 
situation is analogous except for that the current I is reversed. By expressing the 
partial cathodic and anodic currents from the known equations of the theory of elec­
trode processes 5 , we obtain the kinetic equations of the considered process in the 
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form (j = 1,2) 

where 

J. = (_1)j+l J + A.C- dEj = _ d[Oxj] Vn-F = d[Red j ] Vn.F = 
J J J dt dt J J dt J J 

kjRed = kf exp [ -(Ej - EOj) Ct.jnjF/RT] , 

k jo• = kf exp [(Ej - EoJ (1 - Ct. j) njF/RT] , 

(la) 

(1 b) 

kf denotes formal rate constant of the electrode reaction for the j-th redox system, 
n j the corresponding number of transferred electrons, Ct. j charge transfer coefficient, 
Aj surface area of electrode, Cj its specific capacity, and Vj volume of electrolyte 
in the electrode compartment. The concentrations [OXj] and [Red j ] at the electrode 
surface are on the assumption of an intense stirring equal to those in the bulk of the 
solution. 

By expressing the actual concentrations as functions of the initial concentrations 
and their decrements 

and considering Ohm's law, J = (El - E2)/R, where R = Rv + R j (Fig. 1) we obtain 
from (1 a) a system of four differential equations for the unknown electrode poten­
tials El and E2 and the decrements x and y: 

A 1C1(dE l /dt) = A 1n1F[klRe.d(a l - x) - k 10 .(b1 + x)] - (E1 - E2)/R , (3a) 

A2C2(dE2/dt) = A2n2F[k2Red(a2 + y) - k20x(b 2 - y)] + (E1 - E2)/R, (3b) 

(3d) 

Generally, this system cannot be solved in a closed form. It is of interest to find out 
the relation between the numerical solution for given parameter values and the 
analytical solution obtained under simplifying assumptions. The numerical solution 
was carried out by the Runge-Kutta method with variable step for 132 combinations 
of the parametrs (R, aI' a l /b2, V, A, Ct. 1, (X2' k~, and C) on a Hewlett-Packard 2116C 
computer. A set of E-t curves thus calculated for various ratios of the initial concen­
trations is shown in Fig. 2. 

Collection Czechoslovak Chern. Commun. [Vol. 49] [1984] 



Kinetics of Redox Reactions 2859 

Analytical solution 

The system of Eqs (3a - d) can be substantially simplified by setting the capacities 
Cj equal to zero; then Eqs (3a,c) and similarly (3b,d) become identical and the system 
is reduced to a single differential equation, e.g. (3c), where the coefficients k1Red 

and k 10 • are functions of the potential E1. Further, since 11 = -12 = I, we can 
express each actual concentration, e.g. [Ox 1], as function of the potentials El and E2 

On substituting this expression into Eq. (3c) we obtain a differential equation for El 
and E2 , which together with Ohm's law (El - E2 )/R = I forms a system of two 
equations for two unknowns; however, the solution cannot be obtained in a closed 
form. The situation does not improve by setting R = 0, El = E2 • A simplifying 
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Scheme of the model electrode system. 
F" E z potential; S switch; R j internal 
resistance; Rv external resistance; I current; 
Pt" Ptz platinum electrodes of large surface 
area: AI' A2 electrode surface area; C I , Cz 
electrode capacity; V I' V 2 solution volume 
a OX t + nl e- =<± Red t , b Red2 - n2 e- ",.t 

::;::t OX 2 

E. V 
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FIG. 2 

Set of E-I curves with parameter atlb2 
obtained by solving the system of Eqs (3a- d). 
Numbers denote the values of at/b2' Para­
meters: C I ~-, C2 = 10- 4 F; R = IOn; b2 

-~ 2.10- 7 molcm- 3 ;/Xt = /X2 = 0·5; VI = 

= V2 = 10 cm3 ; Al =c A2 = 100 cm2 ; k~ = 

~~ k~ ,-~ 10- 3 cm S-I; EOt = 0·4 V; E02 = 

0·0 V; Te- 302 K; a2 ='" bl = O. Decreasing 
curves corrrespond to E t -I dependence, 
increasing to Ez-I 
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assumption is that the back reaction n 2 Red 1 + n 1 OX2 -+ n 2 OX1 + n 1 Red2 does 
not proceed, i.e. the terms containing kiox and k2RCd are cancelled. Thus, Eq. (4) 
is simplified and Eq. (3e) takes the form 

(5a) 

On substituting Eqs (1 b) for k20x and klRe.d and introducing the parameters 

Q = RTA2 exp [-(1 - cx2) n2FEo2/RT] k~ 
F[cxlnl + (1 - cx2) n2] V2 ' 

W = RTAl exp (cx 1nl FEodR T) k? , 

F[cx1nl + (1 - cx2) n2] VI 

(5b,e) 

we can separate the variables in Eq. (5a) and integrate in a closed form on the as­
sumption that Fn 2(1 - cx2)/RT = Fn1cxl/RT = m. The solution with respect to the 
initial condition t = 0, E = E(O) is 

_ 1 I [-1 + J(Q/W)exp(mE) -1 - J(Q/W)exp[mE(O)]] 
t - 2mJ(QW) n -1 _ J(Q/W)exp(mE)· -1 + y'(Q/W)exp[mE(O)] . 

(5d) 

This is in substance the equation of the discharge curve in the simplified case. 

It is interesting to determine the reaction time, too, necessary for the defficient 
reaction component to be entirely exhausted. This time is, in contrast to homogene­
oue reaction kinetics, not infinitely long, but corresponds to the value from Eq. (5d) 

E 

2 

a 

FIG. 3 

Approximate course of £-t curves for various 
values of £(0). Dashed curves were calculated 
with regard to back reactions 
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for J:'---> 00 (exhaustion of Red2 ) or E -+ - 00 (exhaustion of Ox I)' Thus, 

(6a) 

and Eq. (5d) can be rewritten in the form 

The p(lsitive sign applies to the decreasing l:.·~t curve, negative for increasing. A set 
or L I Lurves thus calculated is shown in Fig. 3. They can be brought to coincidence 
by "hirling along the time axis: each shorter thus becomes a part of a longer one; 
its beginning corresponds to the value of E(O), for which we obtain from Eq, (1 a) 
(a:;sull1ing Cj = 0, R = 0) 

\\;lCfe () = F[iXlnl + (1 - iX 2 ) n2]/RT. By introducing Eq. (7a) into (6a) we obtain 
the reaction time 

(7b) 

To generalize this result for the case iXtnl #- (1 - iX 2 ) 11 2 , In must be chosen so as 
to obtain agreement with a special solution of Eq. (5a)* valid for any values of iX l 

and :;(2' If the form Red 2 is in excess, we choose 111 = iX 1111 F/ RT, and if the form OX 1 

is in excess, m = 112 (1 - iX 2) F/RT. In the case where 111 Vlal/n2V2b2 ~ 1, or 
11212b2/IIIVlal ~ I, the logarithmic term in Eq. (7b) can be expanded in series; 

we set 01 = iXlnt/[iXln l + (1 - iX 2) 11 2 ], (}2 = (1 - iX2) n2 /[iX l n l + (1 - iX2) 11 2 ], 

and obtain respectively for the cases of decreasing and increasing E~t curve 

* lq. (5a) can be rearranged by neglecting the back reaction and assuming 11 ~.C -12 

to obtain dEldt c (k20xA2IV20)(1 -- [Red21/[Oxtl) or analogously dE/dt =~ (klRedAl/ 

iV,Oi[O'd![Redzl - I). On the assumption that [Oxll/[Red21 ~ al/b} ~ lor [Red21/[Oxtl:£ 
h2 (II ~ I, the conccntration ratio can be neglected against I and the equation can be 

integrated for any valucs of III or 1l 2 . 
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(8a) 

= ~ ex [- (1 - (1.z) nzF (E(O) - E )J. 
k~Azl!z P RT oz 

(8b) 

Reaction Time at Nonzero Resistance 

It is seen from Eqs (8a,b) that many parameters influencing the value of too (e.g. 
starting concentration, standard redox potentials) are involved in a single quantity, 
viz. E(O). Since the initial potential depends on the resistance, we may assume that 
the dependence of too on R will be involved in the quantity E(O, R), i.e. in the initial 
potential at a given resistance. Since at nonzero resistance E 1 =1= Ez, we set E(O) = 

= E1(0, R) in Eq. (8a) and E(O) = Ez(O, R) in (8b). These assumptions were veri­
fied on theoretical Eet curves obtained by numerical solution of the system of Eqs 
(3a - d) at various resistances R, coefficients (1., and initial concentrations; the values 
of log too and E1(0, R) so obtained and the values of E1(0, R) calculated from the 
approximate equations (Fig. 4) satisfy the linear relation corresponding to the equa­
tion 

(9) 

which is analogous to (8a); the factor x is equal to l!1 only for low resistances (R ~ 
~ 10 n) and low values of (1.1((1.1 < 0'3), otherwise x = 0·96. This weak dependence 
of x on (1.1 and R in the region of low resistances causes deviations from the linear 
course, denoted by dashed curve in Fig. 4. 

To obtain an analytical expression for E1(0, R) and Ez(O, R), we use (for Cj = 0) 
the equality 11 = -lz (see Eq. (la)) for the initial concentrations and Ohm's law 
at the beginning of the reaction: 

1l1A1Fk? exp [ - ':X~~F (E 1(0, R) - E01 )J a 1 

= nzAzFk~ exp [(1 - ':Xz) ~~ (Ez(O, R) - E02 )J bz = 1(0, R), (lOa) 
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(lOb) 

The resistance R causes a shift of the initial potentials with respect to E(O) towards 
the corresponding equilibrium values. Thus, 

E1(0, R) = E(O) + X, E2 (0, R) = E(O) - Y. 

On introducing these relations into Eqs (lOa,b) we obtain 

log tao 

100 

11(;.4 

/, , 
5 

E,(O,RJ,mV 400 

(lOc) 

Verification of the linear form of Eq. (9). Values of tao werc dctermined from E 1-t curves obtained 
by numerical integration of Eqs (3a-d); the point corresponding to 1/4 of the height of the 
L l --/ curve was used. Values of E1 (0, R) were determined both from the £1-t curves and from the 
solution of Eqs (JOa,b) (points 0). R = 0, 10, 50, 100-1 000 (at 100 0 step), I 500, and 2 000 0; 
", - 4. 10- 5 mol dm- 3 , adb2 = 0·1 (points e), adb2 = 0·2 (0), a1/b2 = 0'3 (iJ); a1 = 

8.10- 5 mol dm- 3, G1 /iJ Z = 0·2 (ED); dotted line (v)) al =- 4.10- 5 mol dm- 3, a 1 /b1 = 

()4--0'9 (at a·) step); parameter IX: 10'); 20'3; 3 0'5; 40·7; 50-9. See Fig. 2 for other para­
meters 

---- ---. ---~ ---- -~---
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Since at zero resistance and capacity the initial concentrations must satisfy the condi­

tion IlIAIFkIRedll! = IlzAzFk20xb2, Eq. (1111) is reduced to 

(11 c) 

which together with Eq. (11 b) forms a system of two equations for two unknowns, 
X and Y. On eliminating Yand introducing 

we obtain 

( = exp (-lis). (12a) 

Now, we define a new function II = K(z) so that K(z) is the solution of the equation 
1/ = exp ( -::u). Thus, 

In K(z) = -::K(z). (12b) 

Eqs (JOe) can hence be rewritten in the form 

where use was made of the relation ¢ = K(IJ), and Eq. (9) for I,," can be rewritten as 

(13a) 

(13b) 

We can eliminate K(17) from Eqs (13a,b), use the definition of 17 and Eq. (7a) to obtain 

(14) 
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IV/He: The factor x can be interpreted as the ratio of the mean current 1 to its initial value 
1(0, R). The latter is given as 1(0, R) = aintAIFkY . exp [-0(1"1 F(E(O) - EOt)/RT] K(lIl, which 
follows from Eq. (lOa, 12a). The mean value 1 is calculated from the total charge correspon­
ding to the form OXI' q = nlFal VI = !too. From this and Eq. (13a) we obtain 1/1(0, R) = x. 

TABLE I 

Ratio of slopes of straight lines according to accurate (numerical) and approximate solutions 
~-~- -~~-- --~ ~- ~-----

Numerical solution 

4'00 2'00 2'00 2·00 1'33 1·50 

Approximate solution 

2J 
I 
i 

I 
logl"" I 

I 

10~ 

o 

FIG. 5 

4'00 2·00 2·00 

1 

20 

Test of Eq. (14) with variable resistance. 
Value of R in the interval 50-1000 Q. 

Reaction time too was determined from E 1-( 

curves obtained by solving Eqs (3a-d) 
on a computer. Initial concentration of the 
oxidant al: 12.10- 5 mol dm- 3 ; 24.10- 5 

mol dm- 3 ; 38.10- 5 mol dm- 3 • Theoreti­
cal value of the abscissa -0'016; CI = C2 = 

10 - 5 F. See Fig. 2 for other parameters 
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2'00 1'33 1·51 

log too 

FIG. 6 

Test of Eq. (14) with variable initial concentra­
tion of oxidant in the interval 4 . 10 - 5 to 
9 . 10 - 5 mol dm - 3. Values of reaction time 
(00 were determined from E 1-( curves ob­
tained by solving Eqs (3a-d) on a com­
puter. Values of R: 1 200 fl; 2 300 fl; 3 
400 fl. C 1 = C2 = 10- 5 F, theoretical value 
of the abscissa --0'016, See Fig. 2 for other 
parameters 
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Equation (14) as a Testing Criterion 

According to Eq. (14), a plot of In too against R/too (at variable resistance) or In too 
against a l/too at variable initial concentration of OXI and constant ratio of ai/ b2 and 
other parameters should give a straight line provided that the simplifying assumptions 
are fulfilled, i.e. practically n 1 V1a 1/n2 V2 b2 ~ 0·5. The specific capacity of the elec­
trodes plays no role within the range of usual values. If the volume is the only variable, 
a plot of too against VI is according to Eq. (13a) a straight line passing through the 
origin of coordinates. The dependence of too on the electrode surface areas is more 
complicated. If Al = A2 = A, which is variable, then a plot of In (tooA) against 
l/too should be a straight line. If only the surface area of one electrode changes, e.g. 
AI, then a plot of In (tooAl) against l/too should be a straight line. 

These predictions, derived from the simplified kinetic equations, were tested 
on theoretical E-t curves calculated numerically from the nonsimplified system 
of equations (3a - d) with various parameter values. Illustrative results ar shown 
in Figs 5 and 6 and in Table I. Eq. (14) is in good agreement with the numerical 
solution of the mentioned system, hence it can be used in its linearized form as 
a testing criterion for the applicability of Eqs (3a - d) in the analysis of experimental 
data related to reactions in redox systems, as wll be shown in a subsequent com­
munication. 
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