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A system of differential kinetic equations is derived for the redox reaction n, Ox; 4 n; Red, &
= ny Ox; + n, Red,, proceeding only through electrode processes. Its numerical solution is
compared with a simplified analytical solution which leads to linearization of the relations be-
tween measurable quantities and thus verification of the kinetic model used on real redox reactions.

If the electron exchange between species Ox; and Red, does not occur because they do not react
chemically with each other or because they are in separate solutions connected by a salt bridge
or diaphragm and provided with short-circuited platinum electrodes, the reaction between species
Ox, and Red, can take place via electrode processes. The kinetics of similar processes is im-

portant, e.g., in developing the latent image!, in amalgam decomposition during manufacture

of soda Iyez, in corrosion3, and can serve as a model of certain enzymatic reactions®.

The aim of the present work was to find an analytical expression for the reaction
time in dependence on kinetic parameters of the electrode processes of both redox
systems, concentrations, electrical resistance, and reactor parameters, and to use
its linearized form as a testing criterion for the kinetics of the reaction.

THEORETICAL

If the reaction between two redox systems, n,Ox; + n;Red, —» n;Ox, + n,Red;,
is realized by means of electrodes (Fig. 1), the increases and decreases of the reaction
components are related to the current I; equal to the net production of a positive
charge per unit time, which is in turn equal to the difference between partial cathodic
and anodic currents. For the positive electrode (potential E,), the current I; consists
of the charging current necessary to change the electrode potential and the current, I,
flowing through the outer circuit. For the negative electrode (potential E,), the
situation is analogous except for that the current I is reversed. By expressing the
partial cathodic and anodic currents from the known equations of the theory of elec-
trode processes®, we obtain the kinetic equations of the considered process in the

‘Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]



Tockstein, Macenauer 3

2858

form (j = 1,2)
. dE,  d[Ox; d[Red;]
= Ajn;F(kyrea[Ox;] — kjou[Red;]) (1a)

where
ije.d = k? exp [_(E) b EOJ) dJnJF/RT] 9
kjox = ki exp [(E; — Eqj) (1 — ;) n;F|RT] , (1b)

k? denotes formal rate constant of the electrode reaction for the j-th redox system,
n; the corresponding number of transferred electrons, «; charge transfer coefficient,
A; surface area of electrode, C; its specific capacity, and V; volume of electrolyte
in the electrode compartment. The concentrations [Ox;] and [Red;] at the electrode
surface are on the assumption of an intense stirring equal to those in the bulk of the
solution.

By expressing the actual concentrations as functions of the initial concentrations
and their decrements

[Ox;] =a, — x, [Red;] =b; +x, [Ox,]=a,+y, [Red;]=b,—y (2)
and considering Ohm’s law, I = (E; — E,)/R, where R = R, + R; (Fig. 1) we obtain
from (la) a system of four differential equations for the unknown electrode poten-
tials E, and E, and the decrements x and y:
Alcl(dEl/dt) = Alan[klked(al - x) - kle(bl + x)] - (El - Ez)/R > (30)
A2C2(dE2/dt) = AznzF[kZRed(aZ + y) - ksz(bZ - y)] + (El - Ez)/R 9 (3b)
n ViF(dx/dt) = A;n F[kigea(a; — x) — kyo,(by + X)], (3¢)

—nszF(dy/dt) Az”zF[kZRed(az + }') - kzox(bz - )')] . (3d)

Generally, this system cannot be solved in a closed form. It is of interest to find out
the relation between the numerical solution for given parameter values and the
analytical solution obtained under simplifying assumptions. The numerical solution
was carried out by the Runge-Kutta method with variable step for 132 combinations
of the parametrs (R, ay, a,/b,, V, A, ay, a,, k%, and C) on a Hewlett-Packard 2116C
computer. A set of E-t curves thus calculated for various ratios of the initial concen-
trations is shown in Fig. 2.
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Analytical solution

The system of Eqgs (3a—d) can be substantially simplified by setting the capacities
C; equal to zero; then Eqs (3a,c) and similarly (3b,d) become identical and the system
is reduced to a single differential equation, e.g. (3c), where the coefficients k.4
and k;,, are functions of the potential E,. Further, since I; = —I, = I, we can
express each actual concentration, e.g. [Ox, |, as function of the potentials E, and E,

nAkyo,(a, + by) + nyAy[kao,(by — 01"1V1/"2V2) -
— kopeg(ay + ayn,Vy/n, V.
[Oxl] - 2R _d( 2 1701 l/ 2 2)] . (4)
niAy(kiox + Kirea) — n2A5(nV3[b,V5) (K20, + korea)

On substituting this expression into Eq. (3c) we obtain a differential equation for E;
and E,, which together with Ohm’s law (E, — E,)/R = I forms a system of two
equations for two unknowns; however, the solution cannot be obtained in a closed
form. The situation does not improve by setting R = 0, E; = E,. A simplifying
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Scheme of the model electrode system.
Ly, E, potential; S switch; R, internal
resistance; R, external resistance; I current;
Pt,, Pt, platinum electrodes of large surface

Set of E-t curves with parameter a,/b,
obtained by solving the system of Eqs (3a— d).
Numbers denote the values of a,/b,. Para-
meters: C == C, = 10"*F, R=10%; b,

area: A, A, electrode surface area; C,, C,
clectrode capacity; V{, V, solution volume
aOxy -+ n e” 2&Redy, b Red, — n,e” <

= 0Ox,
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assumption is that the back reaction n, Red, + n, Ox, - n, Ox, + n, Red, does
not proceed, i.e. the terms containing ko, and k,g.s are cancelled. Thus, Eq. (4)
is simplified and Eq. (3c) takes the form

dE RT A A
- = (—2 kyox — _lklked> . (5a)
dt F[alnl + (l - az) ’12] V2 Vl

On substituting Eqs (1b) for ko, and kygq and introducing the parameters

_ RTA, exp [—(1 — a,) n,FEo,/RT] k3 W= RTA, exp («yn, FEy,|RT) k
Flayn, + (1 — o) ny] V, ’ Flayn, + (1 — o) n,] v,
(5b,c)

3

Q

we can separate the variables in Eq. (5a) and integrate in a closed form on the as-
sumption that Fn,(1 — «,)/RT = Fnja,;/RT = m. The solution with respect to the
initial condition t = 0, E = E(0) is

t= 1 In [—1 + /(Q/W)exp (mE) —1 — J(Q/W)exp [mE(O)]]. (5d)
2m J(QW) [ —1 — J/(Q/W)exp(mE) —1 + \/(Q/W)exp [mE(0)]

This is in substance the equation of the discharge curve in the simplified case.

It is interesting to determine the reaction time, t., necessary for the defficient
reaction component to be entirely exhausted. This time is, in contrast to homogene-
oue reaction kinetics, not infinitely long, but corresponds to the value from Eq. (5d)

FiG. 3
Approximate course of E~t curves for various
i 2 values of E(0). Dashed curves were calculated
0 t with regard to back reactions
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for E — oo (exhaustion of Red,) or E - — oo (exhaustion of Ox,). Thus,

_ 1 2 [ 1= V(Q[W)exp [mE(0)] y
_ZmVKQWf [—1+\AQHMeuﬂﬁE®ﬂ(_n] (64)

and Eq. (5d) can be rewritten in the form

- LS [fljy (Q/w) e)‘p—(mf)(il):l- (6b)
) 2mJ(QW) L—1+ (Q/W)exp (mE)

The positive sign applies to the decrcasing E—~t curve, negative for increasing. A set
of £~ curves thus calculated is shown in Fig. 3. They can be brought to coincidence
by shifting along the time axis: cach shorter thus becomes a part of a longer one;
its beginning corresponds to the value of E(0), for which we obtain from Eq. (Ia)
(assuming C; = 0, R = 0)

amzpﬁm%utg;&M£g+lmwﬁﬁﬁ_llW%%m (7a)
RTO 0 n,A,ksb, 0 Qn,V,b,

wiere 0 = F[ayn, + (1 — a,) n,]/RT. By introducing Eq. (7a) into (6a) we obtain
the reaction time

) —m/0
t, = 0 <A 24, kSk9 exp [Eoana(1 — ) + Emozln,]m.
2m \V,V, 0

1 + (nyVia,[n,V,b,)™°
1 — (nyVia [nyVyb,)™ m/e "

(76)

To generalize this result for the case on, # (1 — ®,) n,, m must be chosen so as
to obtain agreement with a special solution of Eq. (5a)* valid for any values of a,
and =,. If the form Red, is in excess, we choose m = a,n, F/RT, and if the form Ox,
is in cxcess, m = n, (1 — a,) F/RT. In the case where n Via,[n,V,b, < 1, or
n,Vaby/nyVia, < 1, the logarithmic term in Eq. (7b) can be expanded in series;
we set oy = anf[ogng + (1 = o) ny], 0, = (I — ) nyf[ayny + (1 — a;) ny],
and cbtain respectively for the cases of decreasing and increasing E~t curve

* Fq. (5a) can be rearranged by neglecting the back reaction and assuming I; == —1I,

to  obtain  dE/dt = (kyg,4,/V,0) (1 — [Red,)/[Ox,]) or analogously dE[dt = (kgeqd;/
[V10010x,]/[Red,] — 1). On the assumption that [Ox,]/[Red,] = a,/b, < 1 or [Red,]/[Ox;] =

2= by/a; €1, the concentration ratio can be neglected against 1 and the equation can be
integrated for any values of a; or a,.
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—et - o1
Iy, = L exp | (Eo2 — Eo1) L e k3 (1‘4‘1 kS ——an1a1>
Q1 RT V, Vi n,V2b,

e ST (0) ~ ). (80

k?Ale

1 o n0,F| /A et /4 e n,V,b,\%
t, = — exp | (Eoz — Eoy) ———— 122 =2 k3 Lk} (‘———‘2 2) =
22 RT V2 V1 anlal

- e[ (=2lnsf o) - )| (8)

kgAzQz

Reaction Time at Nonzero Resistance

It is seen from Eqs (8a,b) that many parameters influencing the value of t,, (e.g.
starting concentration, standard redox potentials) are involved in a single quantity,
viz. E(O) Since the initial potential depends on the resistance, we may assume that
the dependence of t,, on R will be involved in the quantity E(0, R), i.e. in the initial
potential at a given resistance. Since at nonzero resistance E; # E,, we set E(0) =
= E,(0, R) in Eq. (8a) and E(0) = E,(0, R) in (8b). These assumptions were veri-
fied on theoretical E,~t curves obtained by numerical soluticn of the system of Eqs
(3a —d) at various resistances R, coefficients «, and initial concentrations; the values
of log t,, and E,(0, R) so obtained and the values of E,(0, R) calculated from the
approximate equations (Fig. 4) satisfy the linear relation corresponding to the equa-
tion

= - exp [“I;IF (0, R) — EO,):l, ©)

A k%

which is analogous to (8a); the factor x is equal to ¢, only for low resistances (R <
< 10Q) and low values of a,(a; < 0-3), otherwise » = 0-96. This weak dependence
of % on o, and R in the region of low resistances causes deviations from the linear
course, denoted by dashed curve in Fig. 4.

To obtain an analytical expression for E;(0, R) and E,(0, R), we use (for C; = 0)
the equality I, = —I, (see Eq. (1a)) for the initial concentrations and Ohm’s law
at the beginning of the reaction:

o
ny A, Fk{ exp[— “RT (E«(0, R) — Em)]al =

— nyd, FiS exp [(1 ~ ) ’% (E+(0, R) — Eoz):l b, = I(0,R),  (10a)
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E,(0, R) — E;(0, R) = R . I(0, R). (10b)

The resistance R causes a shift of the initial potentials with respect to E(0) towards
the corresponding equilibrium values. Thus,

E,(0,R) = E(0) + X, E,(0,R) = E(0) — Y. (10c)

On introducing these relations into Egs (10a,b) we obtain

1y AL FK exp[- }T_F (E(0) — EO,)] exp(_ _RTF x) o =

noF

= n,A,FkS exp [(1 — a,) 2T

 RT

(E(0) — EOZ)] b, exp<— (1 = @) noF Y) , (11d)

logte

L ! L L

100 E,(O,R),mV <00

biG. 4
Verification of the linear form of Eq. (9). Values of ¢, were determined from E;—t curves obtained
by numerical integration of Eqs (3a—d); the point corresponding to 1/4 of the height of the
E -t curve was used. Values of E; (0, R) were determined both from the E,—¢ curves and from the
solution of Eqs (/0a,b) (points O). R = 0, 10, 50, 100— 1 000 (at 100 Q step), 1 500, and 2 000 Q;
@y - 4.1073 moldm™3, a,/b, = 0-1 (points ®), a,;/b, = 02 (O), a;/by = 03 (B); a; =

8.107 3 moldm™3, a,/b, = 0-2 (®); dotted line (=) a; — 4.10"°> mol dm™3, a,/b, =

0:4--0-9 (at 0-1 step); parameter a: 1 0-1; 20-3; 3 0'S; 40-7; 50-9. See Fig. 2 for other para-
meters
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ayn F oan, F
X + Y= Rn, A, Fk°a, ex 12 (E(0) — E exp( — 121 X). (11b
1A kiay p[ RT - (E(0) — 01) p RT ( )

Since at zero resistance and capacity the initial concentrations must satisfy the condi-
tion n A, Fk geqty = nyA,Fky0,b,, Eq. (11a) is reduced to
am X = (1 = o) n,Y (11¢)

which togcether with Eq. (11b) forms a system of two equations for two unknowns,
X and Y. On climinating Y and introducing

= XRa;Ripeg02, N = (3‘1’71F;;RT) >R Reat Ry Ripeq = 1A Fhigeq

we obtain
&=exp(—yd). (12a)

Now, we define a new function u = K(z) so that K(z) is the solution of the equation
u = exp (—zu). Thus,
InK(z) = —:zK(z). (12b)

Egs (10c) can hence be rewritten in the form

RT ¢ = RT n K(x c
E,(0, R) = E(0) — Zf;x_F]n K(n), E5(0,R) = E(0) + (<o) nzFl K(n), (12¢)

where use was made of the relation ¢ = K(»), and Eq. (9) for 1, can be rewritten as

(o= 2 ex ["'Fu) m] ot (13a)

A k=
F
Int, = In -A;'Vlf;,; + 3‘11;—’— (E(0) — Eqy) + n K(n). (13b)
1~

We can eliminate K(n) from Eqs (13a,b), use the definition of 7 and Eq. (7a) to obtain
V™! a\% o n
nt, =In|— LM G\ B, - By +
’ li(n1 A kD) (nzA k(’)‘“ < ) ] RT 0z(Eo: o1)

oyn F - Vin,F a,R
e
RT % t,

(14)
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Note: The factor » can be interpreted as the ratio of the mean current I to its initial value
I(O, R). The latter is given as I(0, R) = alnlAle? .exp [—oa n F(EQ0) — Ey)/RT] K(n), which
follows from Eq. (I0a, 12a). The mean value I is calculated from the total charge correspon-
ding to the form Ox,, ¢ = n,Fa,; V| = It,,. From this and Eq. (13a) we obtain I/I(0, R) = .

TaBLE I

Ratio of slopes of straight lines according to accura

Int, ~ R/t

te (numerical) and approximate solutions

Int, ~a/t,

Numerical solution

4-00 2-:00 2:00 2:00 1-33 1-50
Approximate solution
4-:00 2-:00 2-:00 2:00 1-33 1-51
. —_— R | E e e
| ! ‘ N
3 2 i
2:0- 1 b 3 £} 2
| 2__ , u
IOg(w ’ ;
,/ 4
e (05t
10p- / ) e i - //// // ]
; s s -
7 nanrs
| I// L //////
L e
! 1, 0('// i
IIJ///
3 1 M e . |
° R/ty, ™) 20 0/tw ,moldm‘s/s
FiG. 5 F1G. 6

Test of Eq. (/4) with variable resistance.
Value of R in the interval 50—1 000 Q.
Reaction time ¢, was determined from E ¢
curves obtained by solving Eqs (3a—d)
on a computer. Initial concentration of the
oxidant a;: 12.107° moldm™3; 24 .107%
mol dm™3; 3 8.1073 mol dm™3. Theoreti-
cal value of the abscissa —0-016; C; = C, =

1075 F. See Fig. 2 for other parameters

Test of Eq. (/4) with variable initial concentra-
tion of oxidant in the interval 4.1073 to
9,107 mol dm™3. Values of reaction time
t,, were determined from E;-t curves ob-
tained by solving Eqs (3¢—d) on a com-
puter. Values of R: 1 200Q; 2 300Q; 3
400 Q. C, = C, = 107 ° F, theoretical value
of the abscissa —0-016, See Fig. 2 for other
parameters
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Equation (14) as a Testing Criterion

According to Eq. (14), a plot of In t,, against R/t,, (at variable resistance) or In t,,
against a, [, at variable initial concentration of Ox, and constant ratio of a,/b, and
other parameters should give a straight line provided that the simplifying assumptions
are fulfilled, i.e. practically n,Via,[n,V,b, < 0-5. The specific capacity of the elec-
trodes plays no role within the range of usual values. If the volume is the only variable,
a plot of t,, against ¥, is according to Eq. (134) a straight line passing through the
origin of coordinates. The dependence of ¢, on the electrode surface areas is more
complicated. If 4, = A, = A, which is variable, then a plot of In (t,A4) against
1/t,, should be a straight line. If only the surface area of one electrode changes, e.g.
Ay, then a plot of In (¢, A, ) against 1/t,, should be a straight line.

These predictions, derived from the simplified kinetic equations, were tested
on theoretical E-t curves calculated numerically from the nonsimplified system
of equations (3a—d) with various parameter values. Illustrative results ar shown
in Figs 5 and 6 and in Table 1. Eq. (14) is in good agreement with the numerical
solution of the mentioned system, hence it can be used in its linearized form as
a testing criterion for the applicability of Eqs (3a—d) in the analysis of experimental
data related to reactions in redox systems, as wll be shown in a subsequent com-
munication.
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